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Abstract—Human-computer interaction based on touch
screens plays an increasing role in our daily lives. Besides
smartphones and tablets, laptops are the most popular mobile
devices used in both work and leisure. To satisfy requirements
of many emerging applications, it becomes desirable to equip
both writing and drawing functions directly on laptop screens.
In this paper, we design a virtual writing tablet system, VPad,
for traditional laptops without touch screens. VPad leverages
two speakers and one microphone, which are available in most
commodity laptops, for trajectory tracking without additional
hardware. It employs acoustic signals to accurately track hand
movements and recognize characters user writes in the air.
Specifically, VPad emits inaudible acoustic signals from two
speakers in a laptop. Then VPad applies Sliding-window Overlap
Fourier Transformation technique to find Doppler frequency shift
with higher resolution and accuracy in real time. Furthermore,
we analyze frequency shifts and energy features of acoustic
signals received by the microphone to track the trajectory of
hand movements. Finally, we employ a stroke direction sequence
model based on possibility estimation to recognize characters
users write in the air. Our experimental results show that VPad
achieves the average trajectory tracking error of only 1.55cm
and the character recognition accuracy of above 90% merely
through two speakers and one microphone on a laptop.

Index Terms—acoustic signals, laptops, virtual writing, trajec-
tory tracking

I. INTRODUCTION

Touch screens become a nonseparable part in smart devices,

and there is a growing trend with more applications requiring

interactions with devices through touch screens. Nowadays

97% smart devices are equipped with touch screen [1]. This

trend has been spread into traditional laptops as laptops are the

most popular mobile devices in both work and leisure besides

smartphones and tablets. However, traditional laptops are not

equipped with touch screens. Although small touchpads on

laptops provide scrolling and swiping functionality, they lack

writing and drawing capabilities, which become increasingly

important in many new applications, such as WRITEit. Thus, it

is essential to enable laptops with touch capability. Moreover,

although some users intend to use keyboard for input, there

are several situations, in which it is hard for users to input via

keyboard. For example, when users are in some transportation

vehicles, they cannot expediently input with keyboard due

to the vibration of vehicles. For disabled people, such as a

person without several fingers, traditional input approach like

keyboard is difficult to interact with computers [2], which

brings the necessity to enable traditional laptops with touch

capability so that disabled people can conveniently interact

with computers through hand gestures.

Recent products, such as Kinect [3], have demonstrated that

the hand gesture is a novel way to interact with computers.

However, these vision-based approaches are sensitive to the

ambient lights and suffer significant performance degradation

under dark environments. Recently, SoundWave [4] utilizes

Doppler effect of acoustic signals to recognize hand gestures

without trajectory tracking. AAmouse [5] and CAT [6] realize

the accurate trajectory tracking based on acoustic signals,

but both of them need additional audio devices (such as

a smartphone) as an acoustic-signal emitter. LLAP [7] and

FingerIO [8] propose gesture tracking schemes using acoustic

signals for wearable devices, and Strata [9] develops a fine-

grained acoustic-based tracker for smartphones, all of which

cannot be adopted in commodity laptops because there are

different audio components in laptops with that in wearable

devices and smartphones. Our goal is to accurately track

trajectory in real time with the audio components including

a microphone and two speakers, which are available on most

off-the-shelf laptops.

In this work, we take one step forward to develop a device-

free virtual writing tablet (VPad) leveraging existing audio

devices on traditional laptops without any additional hard-

ware. By leveraging acoustic signals emitted from the laptop,

VPad seeks to achieve the fine-grained trajectory tracking and

accurate character recognition. To enable the virtual writing

capability in the air leveraging acoustic signals, a number

of challenges arise in practice. Firstly, the acoustic signal

sampling rate is limited by laptops’ hardware. The acoustic

signals can be easily affected by ambient noise, resulting

in measurement errors and instability of recorded signals.

Secondly, the audio devices of laptops are constrained to two

speakers and one microphone, providing limited information to

perform accurate hand movement tracking. Finally, the system

needs to deal with different writing habits and provide accurate

character recognition based on hand movement trajectory.

To achieve two critical factors in hand movement track-
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Fig. 1. Illustration of the virtual writing tablet
on a laptop.

Fig. 2. Illustration of the confidential coefficients of
the acoustic signals under different hand positions.

Fig. 3. Illustration of horizontal areas dividing.

ing: real-time and accuracy, VPad realizes hand movement

tracking by letting the two speakers emit the acoustic signals

with different frequencies, and the microphone records the

acoustic signals reflected by the user’s hand. Specifically, we

first propose Sliding-window Overlap Fourier Transformation
(SOFT) technique to increase measuring resolution for real-

time tracking. The trajectory of each hand movement can be

decomposed into horizontal and vertical movements. VPad

first identifies the energy patterns of the reflected acoustic

signals to continuously track the hand’s horizontal movements,

and then uses Doppler frequency shift of the acoustic signals

to carry out tracking of the vertical movements. To realize the

final step of character recognition, we use a stroke direction

sequence model based on possibility estimation to deal with

different writing habits and recognize the exact characters

written in the air.

We highlight our main contributions as follows:

• We propose VPad to enable writing in the air for tradi-

tional commercial laptops leveraging the existing audio

devices including two speakers and one microphone on

a laptop.

• We utilize both frequency shift and energy feature to en-

able VPad accurately track hand movements, and present

SOFT technique and use a non-rectangular window func-

tion for real-time tracking.

• We employ a stroke direction sequence model based on

possibility estimation to recognize exact characters users

write in the air, which handles different writing habits.

• Our experimental results with multiple participants show

that the character recognition accuracy of VPad is higher

than 90% in different environments, and the average error

of trajectory tracking is 1.55cm.

The rest of this paper is organized as follows. We analyze

the feasibility of several fundamental techniques in Section II.

Section III presents the system architecture and design details

of VPad. We evaluate the performance of VPad and present

the results in Section IV. Finally, we review the related work

and give conclusive remarks in Section V and VI respectively.

II. FEASIBILITY STUDY

In this section, we present the feasibilities of some potential

techniques, including energy features and Doppler shifts, on

the acoustic-based hand movement tracking with a single

laptop, which serve as the foundation for our system.

A. Tracking the Horizontal Movement Velocity using Energy
Features of Acoustic Signals

As illustrated in Fig. 1, the left and right speakers emit

acoustic signals with different frequencies, which generates

two transmitting channels, i.e., Channel1 and Channel2.

When the hand is put on the top of keyboard, there are two

transmitting paths for each channel. The energy1 of received

acoustic signal from each channel can be represented as

E = E0 +E1, where E0 denotes the energy of Line-Of-Sight

(LOS) signals, and E1 denotes the energy of acoustic signals

reflected by the hand. Therefore, the energy of acoustic signals

received by the microphone increases dramatically when a

hand is above keyboard.

We assume E0 obeys Gaussian distribution, and a sample

set E′ of E0 obeys T-distribution. For an acoustic signal s
received by the microphone, the confidential coefficient c of

signal s relative to E0 can be presented as

c =

∫ t=−|t0|

−∞
P (n, t) +

∫ ∞

t=|t0|
P (n, t), (1)

where P (n, t) is the possibility distribution function, and

t0 =
1

σE′
(E′ − Es)

√
n− 1, (2)

where E′ and σE′ are the mean and variance of E′ respec-

tively, Es is the energy of signal s, and n is the size of sample

set. From Eq. (2), we notice if Es goes far away from the

expectation of E0, the value of t0 would increase. Combine

with Eq. (1), we find that both parts of the confidential

coefficient, i.e.,
∫ t=−|t0|
−∞ P (n, t) and

∫∞
t=|t0| P (n, t) would

decrease, leading to the decrease of confidential coefficient

c, i.e., the possibility that signal s is a sample of E0 decreases

and further a higher proportion of signal s’ energy comes from

acoustic signal reflected by the hand, vice versa.

Based on Eq. (1), an acoustic signal received by the mi-

crophone has a unique energy feature < c1, c2 >, where c1

1The energy of acoustic signals here is defined as the amplitude of the
acoustic signals in frequency domain.
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Fig. 4. Illustration of the vertical movement. Fig. 5. Illustration of the horizontal movement. Fig. 6. Doppler frequency shift when the hand
movement at the left of the virtual writing tablet.

and c2 denote the confidential coefficients in Channel1 and

Channel2 respectively. To capture the unique energy feature,

we trace the acoustic signal received by the microphone under

four conditions, i.e., without hand, hand in the right, hand

in the left and hand in the middle, and calculate energy

features < c1, c2 > for each condition. Fig. 2 illustrates

confidential coefficients of the acoustic signal under different

hand positions. We can see that in each channel, the values

of confidential coefficient present significant differences under

different conditions. Thus, the energy feature < c1, c2 > of

acoustic signals received by the microphone is dominated by

hand positions. To further utilize the energy feature in tracking

hand position, we divide the 2-D virtual plane into n horizontal

areas, i.e., F1, ...Fn, as shown in Fig. 3. When the hand is in

the area Fi, the extracted energy feature would have similar

patterns, i.e.,{
c1 ∈ [min(K1i,K1(i+1)),max(K1i,K1(i+1))]

c2 ∈ [min(K2i,K2(i+1)),max(K2i,K2(i+1))],
(3)

where K1i and K2i are thresholds of Fi’s confidence coeffi-

cient from Channel1 and Channel2 respectively. Therefore,

we can track the horizontal hand position by comparing the

patterns of received acoustic signal on energy feature with that

of each area.

During the time period of Δt, if a user’s hand moves from

the area Fa to the area Fb, the horizontal movement velocity

vh can be obtained by

vh =
xa − xb

Δt
, (4)

where xa and xb are the horizontal positions of Fa and Fb’s

center points respectively.

B. Tracking the Vertical Movement Velocity using Doppler
Shifts of Acoustic Signals

We also study the feasibility of utilizing energy features

of acoustic signals to track the vertical movement. However,

we find that tracking the vertical movement through energy

features does not achieve acceptable results, so we adopt

Doppler shift to track the vertical movement velocity. For each

channel, during a hand movement, the propagating distance

of acoustic signal reflected by the hand would change, which

leads to Doppler shift [4]. The Doppler frequency shift, Δf ,

can be represented as Δf = vf0/v0, where f0 and v0 are the

frequency and speed of the signal respectively, and v is the

rate of propagating distance’s change.

Fig. 4 shows an example of hand vertical movement.

The distance between speaker and microphone is 2L, and

∠α denotes the angle between microphone-speaker line and

horizontal line, both of which are known constants. Although

the positions of microphones and speakers in different laptops

vary with each other, the method is still effective as long as

users provide the relative position information in advance.

For hand vertical movement from t0 to t0 + Δt, the

propagating distance of acoustic signals reflected from the

hand is s1 = k1 + k2 =
√
x2 + (L sinα)2 + h2 +√

(x− 2L cosα)2 + (L sinα)2 + h2, where h denotes the

hand vertical position at t0 (i.e., the height of hand rel-

ative to the keyboard), x denotes the hand horizontal po-

sition at t0 (i.e., the horizontal distance from the left

speaker to the hand position). Let vv denote the ve-

locity of hand vertical movement. After one time unit

Δt, the propagating distance of the acoustic signal is

s2 = k′1 + k′2 =
√
x2 + (L sinα)2 + (h+ vvΔt)2 +√

(x− 2L cosα)2 + (L sinα)2 + (h+ vvΔt)2. Based on the

two distance, the rate of acoustic signal propagating distance

change during Δt is

vpv=
Δs

Δt
=

d(|s2 − s1|)
dt

=
hvv√

x2 + (L sinα)2 + h2

+
hvv√

(x−2L cosα)2+(L sinα)2+h2
.

Therefore, Doppler frequency shift caused by the vertical

movement is

Δf1 = f1(vv, x, h) =
vpvf0
v0

.

Similarly, for a hand Horizontal Movement from t0 to t0+Δt,
as shown in Fig. 5, the rate of acoustic signal propagating

distance change during Δt can be represented as

vph =
xvh√

x2 + (L sinα)2 + h2

+
xvh√

(x− 2L cosα)2 + (L sinα)2 + h2
,
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where vh denotes the velocity of the hand horizontal move-

ment. Therefore, Doppler shift caused by the horizontal move-

ment can be presented as

Δf2 = f2(vh, x, h) =
vphf0
v0

.

Doppler shift Δf of the acoustic signal from one channel

is the composition of Δf1 and Δf2, i.e.,

Δf =
√
Δf2

1 +Δf2
2 =

√
f2
1 (vv, x, h) + f2

2 (vh, x, h). (5)

Theoretically, there are two Doppler shifts from Channel1 and

Channel2 respectively. However, if the hand movement is at

the left of virtual writing plane, Doppler shifts from Channel2
(i.e., from the right speaker to the microphone) are too weak

to measure, as shown in Fig. 6, vice versa. Hence, Doppler

shift from Channel1 and Channel2 are used to track the hand

movement at the left and right of the plane respectively.

Assuming that x and h are known, and Doppler shift Δf from

Channel1 or Channel2 is accurately measured. Since we have

the horizontal movement velocity vh in Δt based on energy

features of acoustic signals, the vertical movement velocity vv
in Δt can be calculated based on Eq. (5).

III. SYSTEM DESIGN

From the above study, we know it is feasible to track users’

hand movements for laptops leveraging acoustic signals. In

this section, we present the design of our proposed system,

VPad, which tracks the user’s hand movement through energy

features and Doppler shifts of acoustic signals propagating

from two speakers to one microphone in a laptop.

A. System Overview

VPad uses acoustic signals to continuously track the hand

movement trajectory, the design of emitted acoustic signals

is thus critical. According to Doppler effect, with the same

rate of propagating distance’s change, the higher original

frequency of the emitted acoustic signal leads to the larger

frequency shift. Since most laptops only support the sampling

rate up to 44.1kHz, the highest sound frequency can be

used is around 22kHz. Thus, VPad generates acoustic signals

with the frequency of 18kHz and 20kHz from two speakers

respectively, which are inaudible to most people [10].

The workflow of VPad is shown in Fig. 7. In Processing
Acoustic Signal, VPad transforms the time domain acoustic

signals into frequency domain signals with the resolution of

1Hz for real-time tracking. In Tracking Trajectory, VPad

decomposes each hand movement into horizontal and vertical

movements. VPad first identifies energy patterns of reflected

acoustic signals to continuously track hand horizontal move-

ments, and then uses Doppler shift of acoustic signals for

tracking of vertical movements. Combined with the estimation

of initial position, VPad can track the trajectory of each

hand movement. Finally, in Recognizing Character, VPad

recognizes exact writing characters using a stroke direction

sequence model based on possibility estimation.
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Fig. 7. The workflow of VPad

B. Processing Acoustic Signal

VPad transforms a time domain signal into a frequency

domain signal using Discrete Fourier Transformation (DFT).

For 20kHz and 18kHz acoustic signals, VPad need do DFT

at least with 40000-point and 36000-point respectively to

reach the frequency resolution of 1Hz. Hence, VPad used

40000-point DFT to optimize signal processing. Because of

the limitation of laptops’ hardware, the sampling rate is less

than 44.1kHz, so the measure time interval is nearly 0.9s (i.e.,

40000 point/44100Hz). However, the time interval of 0.9s is

too long to detect the hand movement in real-time.

In order to improve time resolution, we present Sliding-
window Overlap Fourier Transformation(SOFT) method,

which uses a sliding window whose length is 0.9s with step

0.1s. VPad performs DFT in each overlapped sliding window

to improve time resolution from 0.9s to 0.1s. Note that DFT

algorithm requires the number of sampling points to be 2n,

otherwise it would result in the frequency domain signal

distortion, i.e., Fense Effect [11]. We thus add zeros at the end

of each sliding-window until the number of points achieves

216 to eliminate Fense Effect. After each sampling step (i.e.,

0.1s), VPad only keeps the sampled data collected in the

latest 0.9s and performs DFT. Through SOFT method, VPad

is able to track the hand movement trajectory in real-time with

only 0.1s time resolution. However, due to frequency leakage

distortion [11], it is hard to accurately capture frequency

shifts in real environments. The frequency leakage introduces

spurious high-frequency components into the spectrum which

declines the accuracy. VPad uses nonrectangular window,

such as Hamming window [11], to suppress spurious high-

frequency components.

C. Tracking Trajectory

VPad’s trajectory tracking algorithm is built on the principle

introduced in feasibility study. In this section, we describe the

design of trajectory tracking in detail.

1) Tracking Horizontal Movements: VPad utilizes energy

features to track horizontal hand movements. The virtual

writing plane is divided into several areas for estimating the

hand’s horizontal position. If the user’s hand is in one of

divided areas, the hand horizontal position is approximately

regarded as the horizontal position of the area’s center point.

Therefore, more divided areas could improve the estimation

performance of horizontal movements. However, more divided
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(a) Error. (b) Accuracy.

Fig. 8. Performance of the horizontal position estimation.

areas would also decrease the area estimation accuracy due to

ambient noises or device fluctuations.

We study empirically the impact of the different number

of areas on the horizontal position estimation. We recruit 20

volunteers (10 males and 10 females), and each volunteer is

asked to put their hand on n (n = 2 · · · 16) different positions

at the virtual plane of VPad. We enable the front camera to

record the actual horizontal position {x1, x2, ..., xn} of users

as ground truths, and the horizontal position {x′1, x′2, ..., x′n}
estimated by VPad as test samples. If xi and x′i belong to the

same area, we regard it as a correct area estimation. Since most

of laptops equip with 12.5-inch, 13.3-inch, 14.0-inch and

15.6-inch screens at present, we repeat the experiment on four

types of laptops respectively. The results are shown in Fig. 8(a)

and 8(b). The error is that the average distance difference in

horizontal position between the ground truths and test samples.

The area estimation accuracy is that the proportion of the

correct area estimations in all area estimations.

From Fig. 8(a) and 8(b), we observe that 6-8 divided areas

can achieve better performance on both error and accuracy.

Also, we find that more areas no longer reduce the error, while

result in more mistaken area estimations. From these observa-

tions, VPad employs 8 divided areas to estimate the horizontal

movement velocity. After the virtual writing plane is divided

into 8 horizontal areas, VPad can track the horizontal position

of the hand by comparing patterns of current signal sample

on energy feature with that of each area, and determines the

horizontal movement velocity vh based on Eq. (4).

2) Tracking Vertical Movements: VPad tracks vertical hand

movement trajectories based on Doppler effect. VPad first

extracts Doppler shift from received acoustic signals. Then,

combined with the horizontal movement velocity, the vertical

movement velocity vv can be calculated based on Eq. (5).

3) Estimating Initial Position: Except for tracking horizon-

tal and vertical movement velocities, VPad needs to estimate

the initial horizontal and vertical positions before tracking

hand trajectory. When the user’s hand starts to move, VPad

first compares energy features of received acoustic signal with

theoretical energy features of each area to estimate the initial

horizontal position x0 at t = 0. Then VPad uses the time

difference of arrival (TDoA) of two received acoustic signals

(i.e., the signal propagating from the speaker to microphone

directly and that reflected by the hand) to estimate the distance

(a) (b) (c)

Fig. 9. Illustration of the trajectory recognition algorithm, (a) the eight
movement directions in a plane; (b) and (c) two different stroke sequences of
the character ‘D’.

difference between two paths, and finally determines the initial

vertical height h0 at t = 0. To ensure the tracking trajectories

are continuous, VPad sets the initial position of trajectory

segment in time t, i.e., (xt, ht), as the ending position of the

trajectory segment in time t− 1.

4) Tracking Trajectory: VPad resolves the hand velocity

into the horizontal and vertical velocities. Based on horizontal

and vertical movement tracking, VPad obtains the horizontal

velocity vh and vertical velocity vv in Δt time. Using vector

composition method, the two-dimensional movement velocity

v in Δt is v = vv × i + vh × j. Then, VPad can track the

hand movement trajectory s via the integration of the velocity

v from t0 to t0 +Δt, i.e.,

s =

∫ t0+Δt

t0

v. (6)

Finally, with the estimation of initial position, we can contin-

uously track hand movement trajectories during any time.

D. Recognizing Character

In this section, we propose an algorithm for VPad to

recognize exact character the user writes in the air. When the

user writes a character on VPad, the writing trajectory can

be converted into a stroke direction sequence. VPad compares

the sequence with potential stroke direction sequences of all

possible characters to find out the most similar one.

To ensure the robustness of character recognition, we first

divide hand movement directions into eight basic directions,

as shown in Fig. 9(a). Thus, VPad can transform a stroke

direction sequence of characters into a number sequence. For

example, one stroke direction sequence of the character ‘D’

can be regarded as a sequence S = [7, 3, 1, 8, 7, 5, 4], as shown

in Fig. 9(b). However, the stroke direction sequence varies

from one user to another, so the character ‘D’ may be written

as another sequence, e.g., S = [7, 3, 8, 7, 5] in Fig. 9(c). We

add all potential stroke direction sequences of a character to

a list as G
char=C

= {S1, S2, ...}, where C is a character such

as ‘A’, ‘D’, etc, and the potential sequences of all characters

can be defined as a set, i.e., G{G
char=′A′ , Gchar=′B′ , ...}.

For matching stroke direction sequences, we use the

Weighted Minimum Edit Distance (WMED) [12] to represent

the similarity between two sequences. The minimum edit

distance between two sequences is defined as the minimum

number of operations (insertion, deletion, substitution) that
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(a) Accuracy (b) Precision (c) Recall (d) F1 Measure

Fig. 10. Overall performance of VPad.

one sequence needs to be transformed into another. To improve

the accuracy of proposed algorithm, we assign a weight

for each substitution operation. If a stroke direction n0 is

substituted by another one n1, the weight of substitution

operation is represented as

w =

{
|n0 − n1| if 1 <= |n0 − n1| <= 4

8− |n0 − n1| if 5 <= |n0 − n1| <= 7,
(7)

where w represents the similarity between two stroke direc-

tions n0 and n1. Thus, the value of WMED between two

sequences is the sum of the weight values of all substitution

operations and the number of insertion and deletion operations.

For a stroke direction sequence Q which is extracted from a

trajectory the user writes in the air, VPad scans all sequences

in the list G and chooses the k-Nearest-Sequences of Q which

have the k least WMED values as a set V = {< S1,m1 >,<
S2,m2 >, ..., < Sk,mk >}, where Si is the ith sequences in

the set V , and mi is the value of WMED between Si and Q.

The P
char=C

, the possibility of the stroke direction sequences

being corresponding to a special character C, is

P
char=c

=

∑
Sk∈G

char=c

∧
<Sk,mk>∈V

1
mk∑

<Sk,mk>∈V
1

mk

. (8)

Finally, VPad can recommend several character options based

on the order of their possibility.

IV. EVALUATION

In this section, we evaluate the performance of our system,

VPad, with four traditional off-the-shelf laptops under three

real environments.

A. Experimental Setup and Methodology

We use a Lenovo S230u with 12.5-inch screen, a Xiaomi Air

with 13.3-inch screen, a Lenovo V470 with 14-inch screen and

a Lenovo Y550 with 15.6-inch screen as experiment facilities.

Only the built-in audio devices of laptops, one microphone

and two speakers, are used in experiments.

We conduct experiments with 20 volunteers (10 males and

10 females). The number of volunteers with ages ranging from

20 to 40 are 14, and that with ages ranging from 41 to 65 are 6.

70 characters are tested to evaluate the performance of VPad

including 26 capital letters (i.e.,‘A’-‘Z’), 26 lowercase letters

(i.e., ‘a’-‘z’), 10 numbers (i.e., 0-9) and 8 special characters

(i.e., Δ, Γ, Ω, Π, Σ, ∠, ∧, ∨). The experiments are conducted

in three real environments, i.e., a lab, a noisy canteen, and a

moving car. In each environment, each user is asked to write

all characters twice with VPad on four laptops, i.e., totally 280

writings for a user in each environment. Each user writes the

characters in the air with his/her own writing habit, regardless

of the writing speed, the size of writing character.

Several metrics are used in our evaluation. Assume i is

the character users supposed to write, and j is the character

recognized by VPad. Let ρij denote the number of recognition

results that recognize a character i as the character j.

Accuracy: The probability that an event is exactly

identified for all type of events, i.e., Accuracy =∑n
i=1 ρii/

∑n
j=1

∑n
i=1 ρij .

Precision: The probability that the identification for an

event A is exactly A in ground truth, i.e., Precisionk =
ρkk/

∑n
i=1 ρik.

Recall: The probability that an event A in ground truth is

identified as A, i.e., Recallk = ρkk/
∑n

i=1 ρki.

F1-Score: A metric that combines precision and recall, i.e.,

F1 Scorek = 2× Precisionk×Recallk
Precisionk+Recallk

.

B. Overall Performance

In each environment, the laptop’s screen displays a trajec-

tory tracked by VPad in real-time when a user writes a char-

acter in the air, and displays several character recommended

options after writing. Note that all writings in the air follow

each user’s own writing habit, which are not always standard

writings.

Fig. 10 shows the accuracy of VPad for each environment,

and the average precision, recall, and F1-score value of all

characters for each environment. It can be observed from the

figure that the performances of VPad in different environments

present insignificant differences. For one character recommen-

dation option, the accuracies of VPad are all above 90% under

three different environments. When VPad recommends three

character options, the accuracy approaches 95% under three

different environments. Meanwhile, F1-score of one, two and

three character recommendation options are all above 0.9, 0.95

and 0.95 respectively under three different environments. This

demonstrates VPad is insensitive to ambient influences, such

as surrounding noises and vibrations.
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Fig. 11. CDF of trajectory tracking
error under different laptops without
and with noise.

Fig. 12. CDF of the system reaction
time for VPad.

C. Performance of Trajectory Tracking

In this experiment, a user draws a line from an initial point

to a target point in the air. For each point in the trajectory, we

calculate the distance between the point and source-to-target

connection line. The average distance of all points is regarded

as the error of trajectory tracking. Each user conducts the

experiment 20 times. Fig. 11 shows CDF of trajectory tracking

error under four types of laptops. It can be seen that 80% of

trajectory tracking errors are lower than 2.5cm under the four

laptops. The average error of trajectory tracking is 1.55cm.

We also evaluate the robustness of VPad against background

noise, in which users write characters in offices where people

walk or talk around. Fig. 11 shows relative results. We can see

that the average error of VPad with noise is almost the same

with that without noise. This is because acoustic signal energy

around the laptop is significantly higher than that elsewhere.

D. System Reaction Time of VPad

In this experiment, we ask the 20 volunteers to write all

characters on devices with VPad and touch screens, i.e., a

Lenovo S230u with VPad, a Lenovo S230u with the naive

handwriting input method (IM) in Windows 10, a Huawei

Honor X2 with the Huawei Swype IM deployed in Android

6.0, and a iPad Air 2 with its naive handwriting IM in iOS

10.2.1. And each character is written four rounds on four kinds

of devices respectively. In each device, we deploy a screencast

software to record the handwriting process. And for each

writing, we enable the camera in each device to trace users’

writing. Through analyzing the frames of the camera records

(the frame rate is 25Hz) and the frames of the screencasts

(the frame rate is 30Hz), we are able to get the ending time

Te that user writes a character in the air or touch screens and

the time Tdev that the recognized character is displayed on

screen. We define the system reaction time as T = Tdev −Te.

Fig. 12 shows CDF of the system reaction time for the four

devices. The average system reaction time of VPad, IM of

Windows 10, Swype of Android 6.0 and IM of iOS 10.2.1

are 0.34s, 0.19s, 0.56s and 0.21s respectively. The system

reaction time of IM in Windows 10 and iOS 10.2.1 are less

because their handwriting IMs are tightly integrated into the

OSes. Instead, VPad and Swype are both third-party softwares,

which cannot fully utilize the capability of OSes. Although the

system reaction time of VPad is larger than that of the naive IM

of Windows 10, the average system reaction time difference

Fig. 13. Accuracy of VPad under
different writing speeds.

Fig. 14. Accuracy of VPad under
different character sizes.

between VPad and IM of Windows 10 is only 0.15s, which is

so little for users to be aware. Also, as third-party softwares,

the system reaction time of Swype is 0.7s for 90% samples,

but that of VPad is only 0.5s. Therefore, VPad is able to

achieve ideal performance, and meets users’ actual demand as

a virtual writing tablet.

E. Impact of Writing Speed in the Air

The speed of the user’s writing in the air may possibly

impact on the accuracy of VPad. We define the writing

speed vC as the writing trajectories’ length |s| of a char-

acter C in the air divides the writing duration Δt, i.e.,

vC = |s|/Δt. We analyze all writing speeds of 20 users

and find that the distribution of the writing speed satisfies the

Gaussian distribution. Thus, 4 percentiles of the distribution

(i.e., 0.05-percentile, 0.2-percentile, 0.8-percentile and 0.95-

percentile) are exploited to divide the writing samples into

5 categories, i.e., very fast writing (vC > 100cm/s), fast

writing (30cm/ms < vC ≤ 100cm/s), medium writing

(10cm/s < vC ≤ 30cm/s), slow writing (vC ≤ 10cm/s)

and very slow writing (vC ≤ 5.5cm/ms).

Fig. 13 shows the accuracy of VPad under different writing

speeds. We can see that the accuracy increases as the writing

speed decrease from fast to slow. But the differences of

accuracies between very fast writing and very slow writing

are only 10.42%, 7.08% and 5.08% under one, two and three

recommendation options respectively. This result shows that

VPad is not sensitive to the writing speed of users.

F. Impact of Writing Character’s Size in the Air

The size of writing character in the air may possibly have

impact on the accuracy of VPad. For each writing character

C, we use a rectangle to surround C, and the area of the

smallest rectangle Schar=C is called as the absolute size of

C. To eliminate the impact of virtual writing tablet’s size

(i.e., laptops’ screen size), we transform the absolute size of

character to the character proportion P , which is defined as the

proportion of surrounded rectangle area Schar=C among the

laptop’s screen area Slaptop=L, i.e., P = Schar=C/Slaptop=L.

We analyze all writing characters’ sizes of 20 users and find

that the distribution of characters’ sizes satisfies the Gaussian

distribution. Thus, 4 percentiles of the distribution (i.e., 0.05-

percentile, 0.2-percentile, 0.8-percentile and 0.95-percentile)

are exploited to divide writing samples into 5 categories, i.e.,

very large characters (P > 0.7), large characters (0.5 < P ≤
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0.7), medium characters (0.3 < P ≤ 0.5), small characters

(0.15 < P ≤ 0.3) and very small characters (P ≤ 0.15).

Fig. 14 shows the accuracy of VPad under different charac-

ter sizes. Although the accuracy decreases as the character size

decreases from very large to very small, accuracy degradations

are only 9.50%, 7.42% and 4.52% under one, two and three

recommendation options respectively. This result shows that

VPad is insensitive to the size of writing characters.

V. RELATED WORK

Existing works on hand movement tracking and handwriting

recognition can be categorized as follows.

Motion sensor-based Tracking: Some works use motion

sensors in mobile devices to capture human movements. For

instance, [13] demonstrates that smart watches can track user’s

arm motions to know the typing content on a keyboard.

However, all these systems require an external device such

as a smartphone or a wearable.

Acoustic signal-based Tracking: Some existing works

rely on acoustic signals, such as utilizing acoustic signal

to snoop keystroke [14], [15], monitor human’s sleep apnea

situation [16], and indoor localization [17]. Regarding the

motion tracking, SoundWave [4] first uses Doppler effect of

acoustic signals to recognize gestures, which can only provide

predefined gesture recognition. CAT [6] realizes a high pre-

cision tracker using acoustic signals. But CAT can only track

hand movement through an additional acoustic-signal emitter

from a smartphone which is held in the user’s hand. More

recently, LLAP [7] and FingerIO [8] design trajectory tracking

algorithms for mobile devices to track users’ fingers near the

devices, and Strata [9] develops a fine-grained acoustic-based

tracker for smartphones using the channel impulse response

of acoustic signals. Due to different deployment of audio

components in laptops and mobile devices, all these works

cannot be adopted in laptops. Moreover, LLAP and FingerIO

employ CW signals and OFDM pulses to achieve accurate

tracking respectively, which are susceptible to the interference

of background for trajectory tracking in a large distance.

Handwriting Recognition: Handwriting recognition has

been widely studied in the past decades. Except for study

on handwriting recognition on specific devices [18], most

recent studies focus on offline handwriting recognition, i.e.,

recognizing a character or word after users’ writing [19].

However, these approaches can only recognize characters in

handwriting images. Since tracked hand movements are stroke

direction sequences instead of images, these approaches cannot

be adopted to recognize characters after users write in the air.

Unlike previous work, VPad only utilizes two speakers and

one microphone on most commercial laptops, for tracking

users’ hand movement trajectories in the air without additional

infrastructures, and adopts a light-weight method to recognize

the handwriting characters in real time.

VI. CONCLUSIONS

In this paper, we design a virtual writing tablet for laptops

based on acoustic signals, VPad, which can accurately track

hand movements and recognize characters written in the air.

Unlike existing works, we only use the built-in audio devices

to realize VPad. First, to achieve high tracking accuracy, we

present Sliding-window Overlapping Fourier Transformation

technique to find Doppler shift with higher resolution in real

time. Then, we propose a trajectory tracking algorithm based

on frequency shifts and energy features of acoustic signals to

track the user’s hand movement. Finally, a stroke direction

sequence model based on possibility estimation is employed

to achieve exact character recognition. Extensive experiments

verify the feasibility and effectiveness of VPad.
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